195 research outputs found

    A new scheme for sulphur dioxide retrieval from IASI measurements: application to the Eyjafjallajökull eruption of April and May 2010

    Get PDF
    A new optimal estimation algorithm for the retrieval of sulphur dioxide (SO<sub>2</sub>) has been developed for the Infrared Atmospheric Sounding Interferometer (IASI) using the channels between 1000–1200 and 1300–1410 cm<sup>−1</sup>. These regions include the two SO<sub>2</sub> absorption bands centred at about 8.7 and 7.3 μm (the ν<sub>1</sub> and ν<sub>3</sub> bands respectively). The retrieval assumes a Gaussian SO<sub>2</sub> profile and returns the SO<sub>2</sub> column amount in Dobson units and the altitude of the plume in millibars (mb). Forward modelled spectra (against which the measurements are compared) are based on the Radiative Transfer for TOVS (RTTOV) code. In our implementation RTTOV uses atmospheric profiles from European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological data. The retrieval includes a comprehensive error budget for every pixel derived from an error covariance matrix that is based on the SO<sub>2</sub>-free climatology of the differences between the IASI and forward modelled spectra. The IASI forward model includes the ability to simulate a cloud or ash layer in the atmosphere. This feature is used to illustrate that: (1) the SO<sub>2</sub> retrieval is not affected by underlying cloud but is affected if the SO<sub>2</sub> is within or below a cloud layer; (2) it is possible to discern if ash (or other atmospheric constituents not considered in the error covariance matrix) affects the retrieval using quality control based on the fit of the measured spectrum by the forward modelled spectrum. In this work, the algorithm is applied to follow the behaviour of SO<sub>2</sub> plumes from the Eyjafjallajökull eruption during April and May 2010. From 14 April to 4 May (during Phase I and II of the eruption) the total amount of SO<sub>2</sub> present in the atmosphere, estimated by IASI measurements, is generally below 0.02 Tg. During the last part of the eruption (Phase III) the values are an order of magnitude higher, with a maximum of 0.18 Tg measured on the afternoon of 7 May

    Validation of the GRAPE single view aerosol retrieval for ATSR-2 and insights into the long term global AOD trend over the ocean

    Get PDF
    The Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) project has produced a global data-set of cloud and aerosol properties from the Along Track Scanning Radiometer-2 (ATSR-2) instrument, covering the time period 1995�2001. This paper presents the validation of aerosol optical depths (AODs) over the ocean from this product against AERONET sun-photometer measurements, as well as a comparison to the Advanced Very High Resolution Radiometer (AVHRR) optical depth product produced by the Global Aerosol Climatology Project (GACP). The GRAPE AOD over ocean is found to be in good agreement with AERONET measurements, with a Pearson's correlation coefficient of 0.79 and a best-fit slope of 1.0±0.1, but with a positive bias of 0.08±0.04. Although the GRAPE and GACP datasets show reasonable agreement, there are significant differences. These discrepancies are explored, and suggest that the downward trend in AOD reported by GACP may arise from changes in sampling due to the orbital drift of the AVHRR instruments

    Diagnosing air quality changes in the UK during the COVID-19 lockdown using TROPOMI and GEOS-Chem

    Get PDF
    The dramatic and sudden reduction in anthropogenic activity due to lockdown measures in the UK in response to the COVID-19 outbreak has resulted in a concerted effort to estimate local and regional changes in air quality, though changes in underlying emissions remain uncertain. Here we combine satellite observations of tropospheric NO_{2} from TROPOspheric Monitoring Instrument and the Goddard Earth Observing System (GEOS)-Chem 3D chemical transport model to estimate that NO_{x} emissions declined nationwide by ~20% during the lockdown (23 March to 31 May 2020). Regionally, these range from 22% to 23% in the western portion of the country to 29% in the southeast and Manchester, and >40% in London. We apply a uniform 20% lockdown period emission reduction to GEOS-Chem anthropogenic emissions over the UK to determine that decline in lockdown emissions led to a national decline in PM_{2.5} of 1.1 μg m^{−3}, ranging from 0.6 μg m^{−3} in Scotland to 2 μg m^{−3} in the southwest. The decline in emissions in cities (>40%) is greater than the national average and causes an increase in ozone of ~2 ppbv in London and Manchester. The change in ozone and PM_{2.5} concentrations due to emission reductions alone is about half the total change from 2019 to 2020. This emphasizes the need to account for emissions and other factors, in particular meteorology, in future air pollution abatement strategies and regulatory action

    Influence of the wintertime North Atlantic Oscillation on European tropospheric composition: an observational and modelling study

    Get PDF
    We have used satellite observations and a simulation from the TOMCAT chemistry transport model (CTM) to investigate the influence of the well-known wintertime North Atlantic Oscillation (NAO) on European tropospheric composition. Under the positive phase of the NAO (NAO-high), strong westerlies tend to enhance transport of European pollution (e.g. nitrogen oxides, NOx; carbon monoxide, CO) away from anthropogenic source regions. In contrast, during the negative phase of the NAO (NAO-low), more stable meteorological conditions lead to a build-up of pollutants over these regions relative to the wintertime average pollution levels. However, the secondary pollutant ozone shows the opposite signal of larger values during NAO-high. NAO-high introduces Atlantic ozone-enriched air into Europe, while under NAO-low westerly transport of ozone is reduced, yielding lower values over Europe. Furthermore, ozone concentrations are also decreased by chemical loss through the reaction with accumulated primary pollutants such as nitric oxide (NO) in NAO-low. Peroxyacetyl nitrate (PAN) in the upper troposphere–lower stratosphere (UTLS) peaks over Iceland and southern Greenland in NAO-low, between 200 and 100 hPa, consistent with the trapping by an anticyclone at this altitude. Model simulations show that enhanced PAN over Iceland and southern Greenland in NAO-low is associated with vertical transport of polluted air from the mid-troposphere into the UTLS. Overall, this work shows that NAO circulation patterns are an important governing factor for European wintertime composition and air pollution

    Validation of SCIAMACHY top-of-atmosphere reflectance for aerosol remote sensing using MERIS L1 data

    Get PDF
    Aerosol remote sensing is very much dependent on the accurate knowledge of the top-of-atmosphere (TOA) reflectance measured by a particular instrument. The status of the calibration of such an instrument is reflected in the quality of the aerosol retrieval. Current data of the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument (operated with the data processor version 5 and earlier) give too small values of the TOA reflectance, compared e.g. to data from MERIS (Medium Resolution Imaging Spectrometer), both operating on ENVISAT (ENVIronmental SATellite). This effect causes retrievals of wrong aerosol optical thickness and disables the processing of aerosol parameters. <br><br> From an inter-comparison of MERIS and SCIAMACHY TOA reflectance, for collocated scenes correction factors are derived to improve the insufficient SCIAMACHY L1 data calibration for data obtained with the processor 5 for the purpose of aerosol remote sensing. The corrected reflectance has been used for tests of remote sensing of the aerosol optical thickness by the BAER (Bremen AErosol Retrieval) approach using SCIAMACHY data

    Global retrieval of ATSR cloud parameters and evaluation (GRAPE): dataset assessment

    Get PDF
    The Along-Track Scanning Radiometers (ATSRs) provide a long time-series of measurements suitable for the retrieval of cloud properties. This work evaluates the freely-available Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) dataset (version 3) created from the ATSR-2 (1995�2003) and Advanced ATSR (AATSR; 2002 onwards) records. Users are recommended to consider only retrievals flagged as high-quality, where there is a good consistency between the measurements and the retrieved state (corresponding to about 60% of converged retrievals over sea, and more than 80% over land). Cloud properties are found to be generally free of any significant spurious trends relating to satellite zenith angle. Estimates of the random error on retrieved cloud properties are suggested to be generally appropriate for optically-thick clouds, and up to a factor of two too small for optically-thin cases. The correspondence between ATSR-2 and AATSR cloud properties is high, but a relative calibration difference between the sensors of order 5�10% at 660 nm and 870 nm limits the potential of the current version of the dataset for trend analysis. As ATSR-2 is thought to have the better absolute calibration, the discussion focusses on this portion of the record. Cloud-top heights from GRAPE compare well to ground-based data at four sites, particularly for shallow clouds. Clouds forming in boundary-layer inversions are typically around 1 km too high in GRAPE due to poorly-resolved inversions in the modelled temperature profiles used. Global cloud fields are compared to satellite products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and a climatology of liquid water content derived from satellite microwave radiometers. In all cases the main reasons for differences are linked to differing sensitivity to, and treatment of, multi-layer cloud systems. The correlation coefficient between GRAPE and the two MODIS products considered is generally high (greater than 0.7 for most cloud properties), except for liquid and ice cloud effective radius, which also show biases between the datasets. For liquid clouds, part of the difference is linked to choice of wavelengths used in the retrieval. Total cloud cover is slightly lower in GRAPE (0.64) than the CALIOP dataset (0.66). GRAPE underestimates liquid cloud water path relative to microwave radiometers by up to 100 g m�2 near the Equator and overestimates by around 50 g m�2 in the storm tracks. Finally, potential future improvements to the algorithm are outlined

    Substantial Increases in Eastern Amazon and Cerrado Biomass Burning‐Sourced Tropospheric Ozone

    Get PDF
    The decline in Amazonian deforestation rates and biomass burning activity (2001–2012) has been shown to reduce air pollutant emissions (e.g., aerosols) and improve regional air quality. However, in the Cerrado region (savannah grasslands in northeastern Brazil), satellite observations reveal increases in fire activity and tropospheric column nitrogen dioxide (an ozone precursor) during the burning season (August‐October, 2005–2016), which have partially offset these air quality benefits. Simulations from a 3‐D global chemistry transport model (CTM) capture this increase in NO2 with a surface increase of ~1 ppbv per decade. As there are limited long‐term observational tropospheric ozone records, we utilize the well‐evaluated CTM to investigate changes in ozone. Here, the CTM suggests that Cerrado region surface ozone is increasing by ~10 ppbv per decade. If left unmitigated, these positive fire‐sourced ozone trends will substantially increase the regional health risks and impacts from expected future enhancements in South American biomass burning activity under climate change

    Impact of the June 2018 Saddleworth Moor wildfires on air quality in northern England

    Get PDF
    The June 2018 Saddleworth Moor fires were some of the largest UK wildfires on record and lasted for approximately three weeks. They emitted large quantities of smoke, trace gases and aerosols which were transported downwind over the highly populated regions of Manchester and Liverpool. Surface observations of PM2.5 indicate that concentrations were 4–5.5 times higher than the recent seasonal average. State-of-the-art satellite measurements of total column carbon monoxide (TCCO) from the TROPOMI instrument on the Sentinel 5—Precursor (S5P) platform, coupled with measurements from a flight of the UK BAe-146–301 research aircraft, are used to quantify the substantial enhancement in emitted trace gases. The aircraft measured plume enhancements with near-fire CO and PM2.5 concentrations >1500 ppbv and >125 μg m−3 (compared to ~100 ppbv and ~5 μg m−3 background concentrations). Downwind fire-plume ozone (O3) values were larger than the near-fire location, indicating O3 production with distance from source. The near-fire O3:CO ratio was (ΔO3/ΔCO) 0.001 ppbv/ppbv, increasing downwind to 0.060–0.105 ppbv/ppbv, suggestive of O3 production enhancement downwind of the fires. Emission rates of CO and CO2 ranged between 1.07 (0.07–4.69) kg s−1 and 13.7 (1.73–50.1) kg s−1, respectively, similar to values expected from a medium sized power station
    corecore